Deletion of Virus-specific T-cells Enhances Remyelination in a Model of Multiple Sclerosis.

نویسندگان

  • Aleksandar Denic
  • Bharath Wootla
  • Laurie Zoecklein
  • Moses Rodriguez
چکیده

We used transgenic expression of capsid antigens to Theiler's murine encephalomyelitis virus (TMEV) to study how the immune response to VP1 and VP2 influences spinal cord demyelination, remyelination and axonal loss during the acute and chronic phases of infection. Expression from birth of capsid antigen under the ubiquitin promoter resulted in tolerance to the antigen and absence of an immune response to the respective capsid antigen following virus infection. The transgenic mice were crossed to B10.Q mice normally susceptible to demyelination but which, when compared to FVB mice of the same H2 q haplotype, show poor remyelination. The major finding in this study was that VP1+ and VP2+ animals featured more remyelination at all three chronic time points (90, 180 and 270 dpi) than transgene-negative controls. Interestingly, at 270 dpi, remyelination in VP1+ mice tended to be higher and more complete than that in VP2+ mice. Compared with transgene- negative controls, VP1+ and VP2+ animals showed similar demyelination in but less only late in the disease (270 dpi). The number of mid-thoracic axons at the last time point correlated with the levels of remyelination. The increase in number of axons in VP1+ mice with remyelination was driven by counts in medium- and large-caliber axons. This study supports the hypothesis that expression of viral capsid proteins as self and subsequent genetic deletion of capsid-specific T cells influences the extent of spinal cord remyelination following Theiler's virus-induced demyelination. We propose that VP1- and, to a lesser extent, VP2-specific CD8+ T cells limit and/or prevent the naturally occurring process of remyelination. This finding may have relevance to human multiple sclerosis, as targeted removal of CD8+ T cells specific for a yet-to-be-discovered causative peptide may enhance remyelination and prevent axonal loss in patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 46: The Role of Kv7-Channels in the Pathophysiology of Multiple Sclerosis

Multiple sclerosis is an autoimmune CNS-disease characterized by inflammatory neurodegenerative events occurring with de- and remyelination. Recent evidence show that demyelinated neurons are less excitable than myelinated ones while at early stages of remyelination these neurons seem to be hyperexcitable. The latter is a transitory condition that, very likely, leads to impaired neuronal networ...

متن کامل

Nogo receptor blockade enhances subventricular zone’s stem cells proliferation and differentiation in demyelination context

Introduction: Nogo-A and Nogo receptor (NgR) are expressed in the subventricular zone (SVZ) stem cells. NgR plays critical inhibitory roles in axonal regeneration and remyelination. However, the role of NgR in SVZ niche behaviors in demyelination context is still uncertain. Here we investigated the effects of NgR inhibition on SVZ niche reaction in a local model of demyelination in adult mouse ...

متن کامل

P122: Small Molecules as Chemical and Pharmacological Tools for Neuroinflammatory Diseases Treatment (with Emphasis on Multiple Sclerosis)

Multiple Sclerosis (MS) is a neuroinflammatory disease resulting in degeneration of the myelin sheaths and death of oligodendrocytes. So far, several strategies have been introduced to control the disease. Treatment with small molecules is one of the strategies that have recently attracted the attention in the scientific community. These molecules that target epigenetic and other cellular proce...

متن کامل

P123: Stimulating In Vivo Remyelination (IVR): A New Approach for Multiple Sclerosis Treatment

Multiple sclerosis (MS) is one of the most common neuroinflammatory disorders that causes disability in the young adults. In this disease immune-driven demyelination and following that inefficient remyelination occurs. Therapies for this disease are limited, especially those to enhance myelin repair. Cellular reprogramming using defined genetic factors is a way to produce remyelinating Oligoden...

متن کامل

Promotion of remyelination by polyclonal immunoglobulin in Theiler's virus-induced demyelination and in multiple sclerosis.

Spontaneous remyelination occurs in experimental models of demyelination and in patients with multiple sclerosis, although to a limited extent. This enables the search for factors that promote remyelination. Using the Theiler's virus model of central nervous system demyelination, promotion of remyelination was observed after passive transfer of CNS-specific antiserum and transfer of CNS-specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurology & translational neuroscience

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2014